
ISRAEL JOURNAL OF MATHEMATICS, Vol. 56, No, 2, 1986 

ARITHMETICAL CONDITIONS ON THE 
CONJUGACY VECTOR OF A FINITE GROUP 

BY 

ANTONIO VERA LOPEZ 
Deparlamento de Matem6ticas, Facultad de Ciencias, 

Universidad del Pals Vasco, Apartado 644 Bilbao, Spain 

ABSTRACI 

We get new properties of the numbers ra (xN) = l{CIc (g) I CI~ (g) N xN¢ f~} 
(where G is a finite group and N is a normal subgroup of G) that are useful in 
the analysis of the classification of the finite groups according to the number of 
conjugacy classes. 

In the following, G will denote a finite group and we will use the standard 

notation of the theory of groups. Moreover,  if S is a non-empty subset of G, we 

define 

re(S)  = [{Cl~(g)I C l c ( g ) N  S ~  Q}[. 

Naturally, re (S) is the number of conjugacy classes that make up the normal set 

l_Jg~G S ~. In particular, r (G)  denotes the number re (G)  of conjugacy classes of 

elements of G. Also, if S is a normal set in G, and 

S = Ci~(z~) 0 • • • 0 CIo(z,)  with [C~(z , ) l>=. . .>- IC~(z , ) l  , 

we define A ~ -  s - (t Ca(zj)I  . . . .  I C~(z , ) l )  and the r-tuple b~ = A~ will be called 

the conjugacy vector of G. 

In t41, we saw that if N ~ G and {gl = 1, ~z . . . . .  ~,} is a set of representatives 

from the conjugacy classes of t~ = G / N, then r( G ) = re ( N)  + Y/~=2 re (giN), and 

we analyze the number r ( G ) t h r o u g h  the analysis of the numbers ra(g;N). In 

fact, we obtain information about r(G)  and A~, once they have been fixed, 

either arithmetical conditions about ]Ce (g,)], or the structure of Ce (g~). These 

results will be used later on, as auxiliary lemmas to classify finite groups 

according to the number of conjugacy classes. The aim of this note is to get new 

properties of the numbers r~(g;N), that are useful in the analysis of the 

classification of the finite groups according to the number of conjugacy classes. 
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1. The number re (gN) 

In the following, whenever N will denote a normal subgroup of G, (~ = G / N  
and T~ = U , E o  gXN. Evidently, we have 

Clo(y~)=Cl~(y2)  if and only if Ty, = Ty~ and ] { T g l g E G } I = r ( G / N ) = t .  

Let {g~ = 1, g2 . . . . .  g,} be a set of representatives from the conjugacy classes of 

G/N, then we have 

(1) r(O) = re (S)  + 2 ro (g,N). 
i = 2  

Next, we will analyze the values ro (gN) for g ~ G - N. 

LEMMA 1. Let N <3 O and z, y be two elements of G. Then I Co (y) n zNl  # 0 

iff z N  ~ C o ( y ) S / S =  Co(y).  Further, in this case, I C o ( y ) n  z N  I = ICN(y)I. 

PROOF. If I Co (y) n z N  I ~ 0, then there exists x ~ Co (y) n zN, so Ix, y] -- 1 

and z N  = xN ~ Co (x). Therefore 

I Co (y) n zS[  = I Co ( y ) n  x S l  = l C6 ( y ) n  s l  = ICN(y)I, 

because x commutes with y. Reciprocally, if zN  ~ Co (y), then z = xn, with 
x E C o ( y ) ,  n E N .  Hence z N = x N  and I C o ( y ) N z N l = i C o ( y ) O x N I  = 

ICN(Y)I. 

THEOREM 1. Let N <3 G. Then for each element g of G, we have 

ro(gN)=(1/IG[)" ~ I C l e ( g ) n  Co(x)l .  ICu(x)l 

where G = G / N  and Co(x) = Co(x )N /N  for each x E G. 

PROOF. The number ro(gN) = re(Tg) is the number of orbits from the action 

by conjugation of G over Ts, f: G---~Er,, given by 

f (x ) (w)  = w x = x- 'wx for every w ETa.  

Set 

a = {(w, x)  e T, xG I wX = w}. 

Then, we have I GI . rc  (gN)= I A] = E.~o O(x), with 

O ( x ) = l { w e T ~ l w  x = w }  1. 

Let {Yb.--,  Ye} be a system of representatives for the right cosets of Ce(~)  
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in G. Then Tg = I[J~=, g"N and 

I (6 0(x)= C (x)a 
j=l 

But 

i=l 

IC (x)n g',N[=O 

(by Lemma 1), therefore it follows that 

if g~'ff C~(x) 

r~(gN)=(1/IGI). ~ c O(x) 

Moreover Cic(g)  = {g~', . . . .  g~'}, so that Lemma 1 gives 

ro(gN) = d/I G I)" ICl ( )n C (x)l. IcN(,)I. 

COROLLARY 1. Let] be an integral number such that g.c.d.(], IG I) = 1. Then 
ro(gN) = r~(gJN). In particular, we have rc(gN) = r~(g-~N). 

PROOF. Since j is a number coprime to IG I, we have C ~ ( x ) =  Ca(x j) and 

CN(x) = CN(x j) for each x E G, therefore it is an immediate consequence of 

Theorem 1. 

DEFINITION. Given two elements y, z E G, we say that y is N-conjugate to z, 

if there exists n E N such that z = y" = n-~yn. The equivalence N-classes are 

denoted by xN = {x" I n E N}. 

To analyze the cardinal I CIc ( g ) n  C~ (x)r, we observe that ] E C~ (x) if and 

only if y fix the N-class x N, by conjugation, that is (xN) y = x N. If u is the number 

of conjugacy N-classes in G, we have u .  IN I= E,~NI C~(n)l ,  so 

u=(1/rNI)" ~ IC~(n) I=IG/NI ' (1 / IGI )  • ~, IC~(n ) f= lG/N l ' r~ (N) .  
n ~ . N  n ~ N  

COROLLARY 2. Let N ~_ G and g E G - N be such that g E Z(G).  Then 

re (gN) = r /I G / N I , where r is the number o[ distinct N-classes in G that are fixed 

by the automorphism as: G---~ G defined by as(x) = x ~ Vx E G. In consequence 
ra(gN)<=ra(N) and we have the equality i[ and only if g E Ca(x) [or each 

x ~ G .  



182 A. VERA LOPEZ Isr. J. Math. 

PROOF. We have CIo ( g ) =  {g}, therefore 

re tAN)= (1/1 G I)" E{I CN(x)llx ~ G and g E C~ (x)}. 

We know that g E Co(x)  itt (xU) g = x N. Set z~ . . . .  , z, u the different conjugacy 

N-classes that are fixed by as. If x ~ G - (z ~ U . - .  0 z u), then g E  Cc (x), so 

re(gU)=(1/IGI) E IcN(x)l; 
i = l  x N 

but I CN(z~)l = I(CN(z,))" [ = ICN(z,)l and Iz~l = IN: CN(zi)l, therefore 

re(AN) = (1//JG I)" ~ [N: CN(z,)[" [ C~ (z,)l-- ([NI/[G {)" r. 
i = 1  

Finally, as the number of N-classes is re(N)" I G / N I ,  we obtain re(AN) <- 

re(N).  

COROLLARY 3. Let N ~_ G and g E G - N be such that ~, E Z ( G ) .  I f  

g.c.d.(j, o(g)) = 1, then re (giN) = re (AN). 

PROOF. We have re (AN) = (1/1G [). E{[ CN (x)l[ x G G and g E Cc (x)}. As 
g.c.d.(j, o (g)) = 1, we have g E C~ (x) iff g~ E Ce (x), hence rc (AN) = re (giN). 

EXAMPLES. In particular, Corollaries 2 and 3 are verified for each g G G - N, 

if G / N  is an abelian group. 

COROLLARY 4 (Burnside). Let N ~_ G. Suppose that G / N  = (g) ~- Cp, with p a 

prime number. Then : 
(1) rc (giN) = s for each j = 1, 2 . . . .  , p - 1, where s is the number of conjugacy 

classes of N fixed by the automorphism ~bg : N ~ N defined by 4tg (n) = n ~ for each 

n G N ;  

(2) r(G) = ps + ( r ( N ) -  s)/p. 

PROOF. It is obvious that re (giN) = re (AN) for each j = 1, 2 . . . . .  p - 1, and 

consequently 

r(O) = r6 (N)  + (p - 1)r~ (gN). 

Moreover r e ( N ) = s + ( r ( N ) - s ) / p ,  because, if CIN(n)S=C1N(n),  then 

Clo(n)  = Cl~(n), and if CIN(m)S~ CIN(m), we have 

Cle (m) = CIN (m) t3 CIN ( m ' )  0 . . .  t3 CI,~ (m""-'). 

On the other hand, re (gN) = (1/I G I)" 2{I CN(x)II x ~ G and g E Ce (x)} and if 
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x E G - N ,  we have i ~ £ ~ C e ( x ) ,  so Ce(x) = (_~ and gE(~ .  Thus 

h E N  x E G - N  

g e Cc,, ( . i 

Moreover, if CIN(n 0 . . . . .  CIN (n~) are the conjugacy classes of N fixed by ~g, as 
g ~ Ce(n) iff CIN(n) g = CIN(n), it follows that 

=~2 ~ )C~(n)l=~Cl~(.,)l-lC~Cn,)l=INl.s, .~N [CN(n)I ,=~,.e (,.,) i=~ 
g E Cc~(n) 

therefore 

ro(gN)=(1/IOl)'(JNIs + 8_,, pCN(x)p) 

jc,.(,,)l) 
= (I/I G'l)" ( INls  + re(N)" I G l -  r(N).  INI) 

= s/p + ( r e ( N ) -  r(N)lp) 

= s / p  + (s  - s / p )  

= S .  

COROLLARY 5. Let N ~_ G and g E G - N. Suppose that 

CIN (rn,), . . . ,  CI~ (m~ ) are the conjugate classes of elements of N that are .fixed by 
some conjugate of g in G. Then 

r~(gN) = 

( l / ]G[) - ( i=~JClc(g) f ' lCc(m,) l lN[+ ~_~[Clc(g)ACe(x) [ ]CN(x) [ ) .  

PROOF Let's observe 

[Clo(g)n  Ce(m)l  = 0 ,or each m N-( ,-10 aN(m,>) 
since CIN (m)g z ~ CIN (m) for each gZ E C1o (g) is equivalent to g~ ~ Ce (m) for 
each g~ E Clc (~). On the other hand, if 

A A 

i = l  i = l  
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then IC le (g )O Co(m)l >-- 1 i~nd I Co(m")l = t Co(m)"l = ICe(m) a] = ICe(m)] 
yields 

E IClc(g)nCo(n)}.}CN(n)}=~ ~ IClc(g)nCo(m,)ilC,,(rn,) I 
n ~ N  "= n ~ C / , 4 ( m i )  

= ~ Iflo(g) n co (m,)l" Ifb,(m,)}" ION(m,)} = ~ Iflc(g) n Co(m,)l INI 
i = 1  i = 1  

and the desired formula is got directly from (1). 

COROLLARY 6. Let N ~_ G and g E G. Then 
(1) r~(gN)<=lCl~(g)l" ro(N) and we have the equality if[ g E 

n , ~ o C o r e  C~ (x). 

(2) r(G) <= ] G/N}. ro (N) and we have the equality iff Co (x)N = G [or every 
x E G .  

(3) ro (gN) <= I G'N/NI" ro (N), where G' = [G, G] denotes the derived sub- 
group of (3. 

(4) There exists z E G such that r (G)_-  < }Clc(e)l. re(N)" r(G/N). 

PROOF. (1) In the formula (1), we notice that }Clc (g) N Co (x)l <-- I Clo (g)l, 

therefore 

rc(gN)<=(1/IG[) • ~ IClc (g)l" [CN(x)I = ICl~(g)l" rG(N). 
x E G  

Moreover,  we have the equality iff Cl~(g)C_Co(x)  for every x ~ G ,  iff 

g E C6(x)" for every x, z E G, that is, g G I"l,~a core Co(x). 
(2) We have r(G)= r~ (N)+ E'~=2 r6 (g~N), with {gl = 1, g2 .. . . . .  g,} a system of 

representatives from the conjugacy classes of (~ = G/N. Therefore, 

r(G) <= ro (N) + [Clc (gz) l ro (N) + . . .  + ]Clo (g,)] ro (N) = ] G/N]. ro (N). 

Moreover,  the equality holds, if and only if g E n x ~ o C o r e  C~(x) for every 

g E G - N, that is, Co (x) = t~ for every x E G. 

(3) It follows from (1), because [ C l o ( g ) l _ - - I C ' l  = I O'N/NI. 
(4) It is enough to choose z E G such that 

ro (zN) = max{ro (giN)] i = 1 . . . .  , t}. 

Next, we obtain some information about the number ro (gN) in a different 

way; we analyze the congruence class of ro (gN) modulo the number 

d = g.c.d.(pl - 1 . . . .  , po - 1) 
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where I GI = P~' " • • P~° is the factorization of order of G in primary powers. We 
have: 

THEOREM 2. Let N <J G and g E G. Then re (gN) --- 1 (modd) .  

e 
PROOF. Set Tg = Uj=t g~'N, where {)7~ . . . . .  ~7,} is a right transversal of Co (g) 

in t~. We have 

[Z~l = ~ Ig~,NI = e.  INI = lCl~ (g)l" [NI. 
i=1 

On the other hand, set T s = CIc ( xm)CJ . . .  (.J CI~ (xn,), with s = re (gN). Then 

INI" IClo(~)l = E~=I ICl~(xn,)l. Since the numbers that appear in the previous 

equality are congruent with 1 modulo d, we conclude that 1 = s (modd) .  

EXAMPLES. (1) If I G I is an odd number, then re (gN) = 1 (mod 2) for each N 

normal subgroup of G and each element g ~ G. 
(2) If G is a p-group and N <J G, then re (gN) ~ 1 (mod p - 1) for each g ~ G. 

2. The tuple AT, 

In this section we are going to study the tuples A~, in diverse special situations. 

If S is a non-empty subset of G, ~j (S) denotes the set of all j- th powers of 
elements of S, that is, ~j (S) = {s j [ s ~ S}. Naturally, ~j (S) x = ~j (S t)  for every 

x E G. We have: 

THEOREM 3. Let N ~ G and let g be an element of G - N. Let j be an integral 

number satisfying the following conditions: g.c.d.(j ,  I G I) --- 1 and ~j (gN) = giN. 

Then re ( g ' N ) =  re (gN) and AY e = AGT,. 

PROOF. We have 

Tg,= U (g 'N) ~ =  U ~,(gN)" : U ~ , ( ( g N ) X ) = ~ , (  U g ~ N ) = ~ , ( T g ) .  
x E G  x E G  x E G  x E G  

Therefore, if 

Tg = U Cl~ (gn, ), 
i=l 

~j(T~) = T~J yields Ts, = U~.l  Cl~ ((gn,)J). Further, as j is coprime with IG l, it 

follows that the application ¢: G--*G, defined by ¢ (g )=g~ ,  is a bijection. 

Consequently, CI~ (z~) = Clc (z~) iff CI~ (zl) = CI~ (z2) and also C~ (z j) = C~ (z) 

for any z,, z2, z E G. Thus T~, = I j  ~=1Clo ( (gn~)  and we get the desired result. 

COROLLARY 7. Let N ~_ G and let g be an element o[ G. Then re ( g N ) =  
r e ( g - ' N )  and c _  G ATg - -  ATg-I . 
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PROOF. It is an immediate consequence from Theorem 3. 

EXAMPLES. (1) Assume G is a group of odd order. Then we know that 

r~ (giN) -= 1 (mod 2). Moreover,  ~ is non-conjugate to g~  in (~, therefore from 

(1), we get 

r ( G ) ~  rG(S)+ 2(t - 1)/2 = re (N)+ r ( G / N ) -  1 (mod 4), 

grouping into the sum every ro ( zN)  with rc (z-~N) for each z E G -  N. 

(2) Let G be a p-group, N <= Z ( G )  and j an integral number such that p £ j, 

then r6 (giN) = r6 (gN) and A~ = A~,. 

Now let's consider the case G I N  ~- Cp, with p a prime number. Let  G I N  = 

(g) -~ Co. Burnside proves that ra (giN) = re (gN) = s for each j = 1,2 . . . . .  p - 1 

and r ( G ) = p s  + ( r ( N ) - s ) / p .  Nevertheless, he doesn't  give any information 

about the conjugacy vector Ac. We have: 

THEOREM 4. Let N ~_ G be such that G / N  = (~,) = Cp, with p a prime number. 

We have : 

(1) If p is the least prime divisor of I G }, then e _ e . . ,  AgN -- As,N = (r~,. r~) for erich 

j = 1 . . . .  , p - 1 and the r(G)-tuple 

(p IcN(n,)l,... ,p IcN(n,)l, IcN (m,)l,'-.c:~.~?-:! '~, ICN(m,)l, r,, f_'., r, . . . .  , r ~ ,  f_'., r,) 

where CIN(n,) . . . . .  CIN(ns) are the conjugacy classes of N .fixed by g and 

Cl~(m~) . . . . .  ClG(m,), the rest of the G-conjugacy classes of N, is the tuple 

conjugacy vector except the components order. 
G 

(2) In general if AdN=(rn, . . . ,r j~) such that rn_~' . .  >>-rjs for every j = 

1 . . . . .  p - l ,  then rll . . . . .  rp_,, and rls = . . . .  rp-ls. 

PROOF. (1) We know that r~ (g'N) = s for j = 1 . . . . .  p - 1. Set 

gN = Tg = Clo (gnl) 0 . "  U Cic (gns). 

We have Clc ((gm~) U . . .  U Clo ((gn,~) C_ Tg, = giN. Since 1 _-< j _-< p - 1 < p 

and p is the least prime divisor of I G I, it follows that g.c.d.(], I G I) = 1 therefore 

the previous union is disjoint, but rc(T~J) = s, so necessarily 

T~, = giN = Clc ((gnl) j) 0 . . .  0 ClG ((gnu) j) 

and now it's obvious that A~,Nc = AgN. 

(2) Let 's fix j. Let rn=[C~(gn) [ and rj, =[Ce(gj~)[. We have t 3 = ( g , ) =  

(gji)~-Cp, so there exists l E N such that griN = ( g , N )  t =  g~,N, therefore 
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Ce (g,,) ---_ Ce (g*~,) yields 

r,~=tCe(g,t)I<-_lCe(gJ~l)l=rj~ for  some i. 

Similarly, there exists a natural  number  l '  such that g , N  = (gj~N) r =  gl'~N and 

Ce (gj~) =< Ca (gi'0 implies rj, = ICe (gJ~)l < I C e  (gl])l = r,,, for some i'. Thus,  

rlt <= ri~ <= rj~ <= rw, but r~ -> r , , ,  so all of them are equal and therefore  r ,  = rj~. 

A similar reasoning proves that r ,  = . . . .  rp_~,. 

EXAMPLES. (1) If S=<3, the equat ion 1/p=Y.7=~l/rj~, j = l  . . . . .  s forces 
G _ _  e A~,N-- A~N for j = 1 , . . . , p - -  1. 

(2) If G is a p -g roup  of order  p~ and G / N  = Ce, then 

e _ Ag,N -- ( p " , . . . ,  p") for each j = 1,2 . . . .  p - 1, 

satisfying the following condit ions:  t~ =>. • - => t, and 1/p = ET~ 1/p". 

In [4] we de te rmined  Aa completely,  in the case G = Nx~K, with N an abelian 

group and supposing that the action A of K in A u t ( N )  is known.  In general ,  if N 

is non-abel ian,  we observe the following: 

PROPOSITION 1. Let  G = N ×~ K. I f  g E Ker 3. N Z ( K ) ,  then re ( g N )  = re ( N )  
and e a A ~  = AN. 

PROOF. We  have g E K t3 Z ( G ) . ' N o w  the result is obvious  because,  as G is a 

semidirect  product ,  we have T~ = g N  = g CIG (n~) U . . -  t.) g Cle (n,) if N = 

U clo (n,). 

We have also: 

PROPOSITION 2. Let  a @ A u t ( G )  and N ~_ G such that N ~ = ( N ) a  = N. Then 

re (g~N)  = re (gN)  and A~°a -_ A~,.e 

PROOF. We have T~ = Ux~G(g~N)  x~ = U y ~ a ( g ~ N )  y = Tg-, C l a ( z , )  ~ = 

f i r  (z2) ~ iff Clc (z~) = f i r  (z2), and I Cia (z ~ )t = [Cle (z)[ .  There fore  re (g~N)  = 

re (gN)  and A~,~ = A~,. 
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