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ABSTRACT

We get new properties of the numbers ra (xN) = [{Cla (g) [Cls (g) N xN# D}
{where G is a finite group and N is a normal subgroup of G) that are useful in
the analysis of the classification of the finite groups according to the number of
conjugacy classes.

In the following, G will denote a finite group and we will use the standard
notation of the theory of groups. Moreover, if S is a non-empty subset of G, we
define

r6(S)=1{Cls (g) | Cla (g) N S# B},

Naturally, 76 (S) is the number of conjugacy classes that make up the normal set
U< S%. In particular, r(G) denotes the number 75 (G) of conjugacy classes of
elements of G. Also, if S is a normal set in G, and

S=Clg(z,)U - UClg(z)  with |Cs(z)|Z -+ =|Cs(2)l,

we define AY = (] Cs(z2))],...,1Cs(2))]) and the r-tuple AS = A; will be called
the conjugacy vector of G.

In |4], we saw that if NG and {g, =1, &,,..., &} is a set of representatives
from the conjugacy classes of G = G/N, then r(G)=r; (N)+ =, 15 (gN), and
we analyze the number r(G) through the analysis of the numbers r;(gN). In
fact, we obtain information about r(G) and Ag, once they have been fixed,
either arithmetical conditions about | Cs (&), or the structure of Cs (g:). These
results will be used later on, as auxiliary lemmas to classify finite groups
according to the number of conjugacy classes. The aim of this note is to get new
properties of the numbers r;(giN), that are useful in the analysis of the
classification of the finite groups according to the number of conjugacy classes.
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1. The number r;(gN)

In the following, whenever N will denote a normal subgroup of G, G = G/N
and T, = U,ccg*N. Evidently, we have

Cls(7)=Cls(3.) ifandonlyif T, =T,, and |{T,|g€ G}|=r(G/N)=t.
Let {g=1,%,...,&} be a set of representatives from the conjugacy classes of

G/N, then we have

0 r(G)=rG(N)+22 rs (gN).

Next, we will analyze the values r; (gN) for g€ G~ N.

LemMmA 1. Let N < G and z, y be two elements of G. Then |Cs(y)N zN|[#0
iff zZN € Cs(y)N/N = C;(y). Further, in this case, |Co(y)N zN|=|Cu(y)|.

Proor. If [Cs(y)N zN|#0, then there exists x € Cs(y) N zN, so [x, y] =1
and zN = xN € C; (x). Therefore

[Ca(y)NzN|=|Ca(y)NxN|=|Cs(y)NN|=|Cu(y)],

because x commutes with y. Reciprocally, if zN € C;(y), then z = xn, with
xECs(y), nEN. Hence zN=xN and [Cs(y)N:zN|=|Cs(y)NxN|=

’CN()’)I-

THEOREM 1. Let N << G. Then for each element g of G, we have
ro(gN) = (/|G |)- 3 |Cla(@)N Co(x)]- |G )|

where G = G/N and Cs(x)= Cs(x)N/N for each x € G.

Proor. The number rs (gN) = rs (T, ) is the number of orbits from the action
by conjugation of G over T,, f: G—2r,, given by

fx)w)y=w*=x""wx  forevery wE T,
Set
A ={w,x)E TxG Jw" = w}.
Then, we have |G| - r6(gN)=|A | = 2.6 0(x), with
0(x)={wE T, |w* = w}|.

Let {yi,..., .} be a system of representatives for the right cosets of Cs(g)
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in G. Then T, = U, g”N and

o(x)=

Con( U g'N)| =3 Icongn].
j=1 =
But

[CG(x)ﬂgy'N|=0 if gy’gCG(X)

(by Lemma 1), therefore it follows that

o (gN)=(1/|G ) 3, 6(x)

~16)- F( 2 (Cwngn).

gir € Ca(x)

Moreover Clg(g)=1{g",...,g"}, so that Lemma 1 gives

rc(gN)=(1/lGi)~x;G |Cla (8) N Co (x)]- [Cn (%)

COROLLARY 1. Let j be an integral number such that g.c.d.(j,|G|)=1. Then
16 (gN) = r5(g'N). In particular, we have r;(gN)=rs (g 'N).

Proor. Since j is a number coprime to |G [, we have Cg(x)= Cs(x’) and
Cu(x)= Cy(x') for each x € G, therefore it is an immediate consequence of
Theorem 1.

DErINITION.  Given two elements y, z € G, we say that y is N-conjugate to 2,
if there exists n € N such that z = y" = n"'yn. The equivalence N-classes are
denoted by x™ ={x" | n € N}.

To analyze the cardinal |Cls (§) N Co (x)|, we observe that y € Cg(x) if and
only if y fix the N-class x ", by conjugation, that is (x)" = x . If u is the number
of conjugacy N-classes in G, we have u-|N|=2,en|Cs(n)], so

u=IN[) 3 1Cs(n)|=|G/N|-(1/|G)- 3, |Ca(n)|=|GIN| 15 (N).

COROLLARY 2. Let NG and g€ G — N be such that § € Z(G). Then
16(gN)=r/| GIN|, where r is the number of distinct N-classes in G that are fixed
by the automorphism a,: G — G defined by a,(x) = x* Vx € G. In consequence
ra (gN)=rc(N) and we have the equality if and only if § € Cs(x) for each
x€G.
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ProoF. We have Cls(g)={g}, therefore

re(gN)=(1/|G|)- 2| Cu(x)||x € G and g € Co(x)}.
We know that § € C5(x) iff (x")* = x™. Set z1,..., z the different conjugacy
N-classes that are fixed by a,. If x € G~ (z} U+ -+ U z}), then §& Cs (x), s0

(M) =G %, T 1Gux)l;
but |Cu (2] =(Cn(z))' | =|Cn(z)| and |z}'| =|N: Cu(z:)], therefore
16 (gN) = (/|G )+ 3 IN: Cu(z)|- [Gu(z)| = (INVIG )+
Finally, as the number of N-classes is r5(N)-|G/N|, we obtain rs(gN)=
r6 (N).

COROLLARY 3. Let N<G and g€ G~N be such that § € Z(G). If
g.c.d.(j,0(8)) =1, then rs(g'N) = rs (gN).

ProOF. We have rs(gN) = (1/|G|)-3{|Cx (x)|| x € G and § € C5 (x)}. As
g.c.d.(j, 0(g)) = 1, we have g € Co (x) iff g € C (x), hence 16 (gN) = ra (g'N).

ExAMPLES. In particular, Corollaries 2 and 3 are verified for each g € G — N,
if G/N is an abelian group.

COROLLARY 4 (Burnside). Let N < G. Suppose that G/N =(8)=GC,, withp a
prime number. Then:

(1) rc(g'N)=sforeachj=1,2,...,p—1, where s is the number of conjugacy
classes of N fixed by the automorphism ,: N— N defined by y, (n) = n® for each
nEN,;

(2) r(G)=ps +(r(N)=s)/p.

ProOF. It is obvious that r; (g'N)=rs(gN) for each j=1,2,...,p—1, and
consequently

T(G)= TG(N)+(p _1)TG (gN)

Moreover r16(N)=s+(r(N)—s)/p, because, if Cly(n)® =Cin(n), then
Clg(n)=Clx(n), and if Cly(m)t# Cly(m), we have

Clg (m)=Cly(m)UCly(m*)U---UCly(m*").
On the other hand, re (gN) = (1/] G|)+ 2{] Gu (x)]| x € G and g € C, (x)} and if
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x €G- N, we have 1 #x € C5(x), so Cs(x)=G and g € G. Thus

@) =G 3 1GmI+ S 1GwI).

x€G-N

gE Co(n)

Moreover, if Cly(ny),...,Cly(n,) are the conjugacy classes of N fixed by ¢, as
g € Cs(n) iff Cly(n)® = Cln(n), it follows that

S IGmI=Y S |Cu(m)]= 3 Clu(m)]- | Cu(m)| =N

neEN
g€ Cg(n)

therefore

@) =G (INIs+ 3 16)1)

~IGDH-(INIs+ 3, IG@I- % 1G]

=(/|G))-(IN|s+ra(N)-|G|-r(N)-[N])
=5/p +(rs(N)—r(N)/p)

=s/p+(s—s/p)

=s.

COROLLARY 5. Let NaG and geG-N. Suppose that
Cly(m)),...,Cly(m,) are the conjugate classes of elements of N that are fixed by
some conjugate of g in G. Then

rc(gN) =

WG (Z 10 @nTalml INI+ 3 1Ce@nCm)1Gw)]).

Proor. Let’s observe
|Cls(g)N Cs(m)|=0  for each mEN—( U ClN(mi)> ,
i=1

since Cly (m)g* # Cly(m) for each g* €Cls(g) is equivalent to g* & Cg (m) for
each g° €Clg(g). On the other hand, if

me (J Clu(m), mEN—(é) ClN(m,»))

i=1
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then [Cls ()N Co(m)|Z1 and |Co(m")|=|Co(m)'|=|Co(m)'|=|Co(m)]
yields

A

2 Ce@NC(ml-|Guml=3; 3 1Cla(@)N Colm)]]|Culm)]

i=1 neCin(m;

A

2 1Cle(8)N Co (m)] IN|

i=

= 2 1Cls ()N Co (m)] - [Cly (m,)] | G (mo)| =

and the desired formula is got directly from (1).

COROLLARY 6. Let N< G and g € G. Then
(1) rs(gN)=|Clg(g)|"r6(N) and we have the equality iff g€

anGCOrea;c—).

(2) r(G)=|G/N|-16(N) and we have the equality iff Cc (x)N = G for every
x€E€G

(3) 16 (gN)=|G’'N/N|-16(N), where G’ =[G, G] denotes the derived sub-
group of G.

(4) There exists z € G such that r(G)=|Cls(2)|- 16 (N)- r(G/N).

Proor. (1) In the formula (1), we notice that |Cls (g)N Co (x)| =|Cls (8)],
therefore

ro(gN)=(U/1G) 2, |Cle (@) [Gv(x)[=[Cle (B)]" ra (N).

Moreover, we have the equality iff Cla(g)ga;(x_) for every x €G, iff
g ET(x)’ for every x,z €G, that is, g € M, cc core Cs (x).

(2) We have r(G) = rs(N)+ S, rc (gN), with {g, =1, &,,..., &} a system of
representatives from the conjugacy classes of G = G/N. Therefore,

HG)=rs(N)+|Cla (g:)|ra (N) + -+ +|Cla (8)|ra (N) = | G/N/- 16 (N).

Moreover, the equality holds, if and only if g € ﬂxeGCOreC_G(x_) for every
g € G — N, that is, m_)=(_? for every x € G.

(3) It follows from (1), because |Cls(g)|=|G'|=|G'N/N].

(4) It is enough to choose z € G such that

1 (zN) = max{r (g.N)l i=1,...,1.

Next, we obtain some information about the number rs (gN) in a different
way; we analyze the congruence class of rs(gN) modulo the number

d=gcd(pi—1,...,p. 1)
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where |G| = p' - - - p*is the factorization of order of G in primary powers. We
have:

THEOREM 2. Let NG and g € G. Then rs (gN)=1 (mod d).

Proor. Set T, = U|., g”N, where {7,,..., 7.} is a right transversal of Cs (g)
in G. We have

IT,1= 3 1g"N|= e [N[=|Clo(@)|"IN].

On the other hand, set T, = Clg (xn,) U - - U Clg (xn,), with s = r5 (gN). Then
IN]-|Clg(g)]| = Zi.,|Cls (xn;)]|. Since the numbers that appear in the previous
equality are congruent with 1 modulo d, we conclude that 1 =5 (mod d).

ExampLes. (1) If | G| is an odd number, then r5 (gN)=1 (mod 2) for each N
normal subgroup of G and each element g € G.
(2) If Gisa p-groupand N < G, then rg (gN)=1(mod p —1)foreach g € G.

2. The tuple A7,

In this section we are going to study the tuples A, in diverse special situations.

If S is a non-empty subset of G, %;(S) denotes the set of all j-th powers of
elements of S, that is, %;(S) = {s’ |s € S}. Naturally, ?;(S)* = %;(S™) for every
x € G. We have:

THEOREM 3. Let N < G and let g be an element of G — N. Let j be an integral
number satisfying the following conditions: g.c.d.(j,|G|)=1 and ?;(gN) = g'N.
Then rs (g'N)=r5(gN) and AT, = AT.

PrOOF. We have

T,=U @Ny=U 2ENy=U @;((gN)‘)=9’,-( U g‘N)=9’,»(Tg).

xeG x€G x€G x€G

Therefore, if
T,= U Clo(gn),
i=1
P(T,) = T, yields T,y = U;., Clg((gn:¥). Further, as j is coprime with |G |, it
follows that the application ¢: G— G, defined by ¢(g)=g’, is a bijection.
Consequently, Clg (z1) = Clg (z2) iff Clg(z,) = Clg(z,) and also Cs(2’) = Cs(2)
forany z1,2,,2 € G. Thus T, = U i-1 Cl ((gn:Y) and we get the desired result.

CoROLLARY 7. Let NG and let g be an element of G. Then rg(gN)=
ro(g”'N) and AT, =ATF-..
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PROOF. It is an immediate consequence from Theorem 3.

ExampLes. (1) Assume G is a group of odd order. Then we know that
1o (&N)=1 (mod 2). Moreover, § is non-conjugate to g;" in G, therefore from
(1), we get

HG)=rs(N)+2(t = 1)2 =15 (N)+ r(G/N)~ 1 (mod 4),

grouping into the sum every r5(zN) with r5(z7'N) for each z € G — N.
(2) Let G be a p-group, N = Z(G) and j an integral number such that p t j,
then r5(g’N)=rs(gN) and AT, = A7,.

Now let’s consider the case G/N = C,, with p a prime number. Let G/N =
(g)=G,. Burnside proves that rs (g'N)=r; (gN)=s foreach j=1,2,...,p—1
and r(G)= ps+(r(N)—s)/p. Nevertheless, he doesn’t give any information
about the conjugacy vector As. We have:

THEOREM 4. Let N < G be such that G/N = (g) = C,, with p a prime number.
We have:

(1) If p is the least prime divisor of |G |, then Agv=Agn=(r,,..., 1) for each
j=1,...,p—1 and the r(G)-tuple

(P|Cu(n)l,-...p|Cy ()], |Cu(m)], T Gy m) S ry )

where Cly(ni),...,Cln(n,) are the conjugacy classes of N fixed by g and
Clg(m,)),...,Clg(m,), the rest of the G-conjugacy classes of N, is the tuple
conjugacy vector except the components order.

(2) In general if AgGiN=(r,»1,...,r,-s) such that r,=Z---2r, for every j=
L...,p~=L thenry=---=r_y, and ry,=---=r,y,.

Proor. (1) We know that rg(g'N)=s for j=1,...,p—1. Set
gN =T, =Clg(gn,)U- - U Clg(gn.).

We have Clg((gn))U---UCls((gn,Y)C Ty =g'N. Since 1=j=p-1<p
and p is the least prime divisor of | G |, it follows that g.c.d.(j,| G |) =1 therefore
the previous union is disjoint, but r; (T, ) = s, so necessarily

T, = g'N =Clo((gny)U - UCla((gn.))

and now it’s obvious that Agy = Agn.
(2) Let’s fix j. Let r; =|Cs(g1)| and r, =|Cs(gs)|. We have G =(gu) =
(g1)=GC,, so there exists | €N such that g:N =(guN) =guN, therefore
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Cs (gn) = Cs(gn) yields
ri=1Co(gi)|=|Co(gi)| =r; for some i.

Similarly, there exists a natural number !’ such that g, N =(g:N)" = g;;N and
Co(g) = Cs(g)) implies 1, =|Cs(g1)|=|Cs(gj1)| = r: for some i'. Thus,
m=r; =1y = ny, but g 2 e, so all of them are equal and therefore ryy = ;.

A similar reasoning proves that r,, =--- =r,_,.

ExampLes. (1) If s =3, the equation 1/p=Z%/_,1/r;, j=1,...,s forces
AKGIN=Afo0rj=1,...,p—1.
(2) If G is a p-group of order p* and G/N = C,, then

Adn=(p",...,pY) foreachj=1,2,...,p—1,

satisfying the following conditions: t,=---=¢ and 1/p =Z{_ 1/p".

In [4] we determined Ag completely, in the case G = Nx, K, with N an abelian
group and supposing that the action A of K in Aut(N)is known. In general, if N
is non-abelian, we observe the following:

PropPOSITION 1. Let G =N X, K. If g €Ker A N Z(K), then r5(gN) = rs (N)
and A7, = A{.

PrOOF. We have g € K N Z(G). Now the result is obvious because, as G is a
semidirect product, we have T, =gN =gCls(n)U---UgCls(n) if N=
U ?=| ClG (n,-).

We have also:

PROPOSITION 2. Leta € Aut(G) and N < G such that N* = (N)a = N. Then
r6(8*N)=rs(gN) and AF.=A%.

Proor. We have Ti=U,cc(g*N)" =U,cc(g°N) = T,«, Clg(z))" =
Clg(z2)" iff Clg (2)) = Clg(z2), and |Clg (z*)] = |Clg (2)|. Therefore rs(g*N) =
r6(gN) and AT.=Af,.
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